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Abstract
The simplified positron elastic scattering model presented in this paper is a
practical method for simulating the positron elastic process. The model yields
a simple analytical formula for the random sampling of the angular deflection,
which allows fast calculations of the transport of charged particles in matter, and
avoids the problem of the infeasibility of detailed simulations when the energy
increases up to hundreds of keV. In order to test our modelling, a simple detailed
Monte Carlo code has been used to calculate the backscattering probabilities in
the keV range. The simulation results and experiments are found to be in very
good agreement.

1. Introduction

Monte Carlo (MC) simulation methods require an accurate knowledge of the processes
governing the penetration of positrons [1, 2] in matter. For energies up to 100 keV, elastic
and inelastic scattering processes undergone by the positrons travelling in the solid target
dominate. Modelling of the positron beam behaviour inside the material of interest depends
on the reliability of the models describing these processes [3–12]. Knowledge of the collision
processes, i.e. the scattering cross sections, can be used to find positron trajectories in an
MC simulation. From the elastic differential cross sections (DCSs), the angular deflection
distribution is calculated and used by random sampling to simulate the elastic events in
chronological successions, i.e. true event-by-event MC simulation. In principle, this detailed
simulation is exact when accurate DCSs are adopted [13]. However, in real simulations and
for progressively higher energies of the incoming positrons, the number of scattering events
per track increases gradually. In such cases (a few hundred keV and larger), detailed MC
simulation is not practical.

Recently [14], we have elaborated an improved practical method to simulate elastic
electron scattering in which single scattering events have been simulated using simple analytical
expressions derived from the Wentzel model. We have shown that simulating with the Wentzel
model reduces to a pure problem of optimization. In the present study, we have applied the
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model for positrons. Our modelling, using the optimized Wentzel (OW2) model [14], yields an
analytic expression convenient for MC calculations and reproduces values of the total elastic
cross sections and the first and second transport cross sections obtained from partial wave (PW)
calculations. The theoretical framework needed to derive the OW2 model is described first,
followed by the simulation strategy used to test the validity of the model. In section 4, extensive
comparisons with experiment and accurate MC models are made for both normal and oblique
incidence. The advantages of the suggested model are discussed at the end of the paper.

2. Theoretical framework

Using the Wentzel model, i.e. using a simplified scattering potential in an exponential form to
reproduce the effect of screening [15], the elastic DCS of a positron scattered by an atom is
obtained in the first Born approximation as

dσ W (θ)

dθ
= πe4

2

(
Z Z ′

E

)2 sin θ

(1 − cos θ + γ )2
(1)
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4a0
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The Wentzel transport cross sections can be calculated analytically. In particular, the first and
second transport cross sections σ W

1 and σ W
2 are expressed as
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The probability P(θ) that a particle scatters by an angle θ is calculated from the distribution of
the angular deflection as

P(θ) =
∫ θ

0
dσ W

dθ ′ dθ ′

σ W
0

= (1 + γ /2)(1 − cos θ)

(1 + γ − cos θ)
. (5)

Using equation (5), one can thus sample the scattering angle as

cos θ = 1 − 2γ P(θ)

2 + γ − 2P(θ)
. (6)

It is important to note that equation (6) is very useful for MC simulations since it requires
only the value of the screening parameter and a random value P(θ). In MC calculations, the
random values P(θ) are represented by random numbers. However, the values of the screening
parameter as described in the Wentzel model lead to inaccurate values of the Wentzel transport
cross sections σ W

l (0, 1, 2, . . .) at low and medium energies. It is well known that accurate
values of DCSPW and σ PW

l can be obtained from partial wave (PW) calculations or from suitable
high-energy approximations [19]. Following the procedure in [14], we conclude again that the
use of σ PW

l (l = 0, 1, 2) as input in the system of equations (2), (3) and (4) leads to different
values of the screening parameter γ since the solution is not unique. An example is given in
figures 1(a) and (b), where we show that it is not possible to find a vector of values γ (E) so as to
reproduce exactly the values of the elastic cross sections calculated from the PW method. As a
consequence, the optimization procedure (OW2) described in [14] based on the use of genetic
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(a)

(b)

Figure 1. (a) Differences between Wentzel and PW transport cross sections of 100 eV positrons in
Al. (b) Differences between Wentzel and PW transport cross sections of 0.5 MeV positrons in Al.

algorithms [16–18] is applied here for positrons. An example of results using the Wentzel
model (OW2) for positrons energies up to 100 keV is presented in figure 2, where the total
cross section and the first and second transport cross sections calculated for an Al target are
presented. As a comparison, values of the PW calculations [19] are also represented.

3. Monte Carlo calculations

Backscattering coefficients for positrons impinging on solid targets may provide stringent
tests on the accuracy of the description of the scattering processes. Calculations of positron
backscattering coefficients as a function of both incident angles and target atomic number Z
for a large range of energies have been made by several authors [4–12, 20, 21].

3.1. Elastic and inelastic processes

The elastic cross sections used in the optimized Wentzel model (OW2) are obtained using the
Dirac PW analysis (ELESPA code) [19] for scattering by a local central interaction potential



10306 Z Chaoui

Figure 2. Transport cross sections (l = 0, 1, 2) calculated from the OW2 model. For comparison,
transport cross sections calculated from the PW from ELESPA code [19] are also represented.

V (r). In ELESPA, the potential is selected from four different electron density models,
namely, the Thomas–Fermi–Molière (TFM), the Thomas–Fermi–Dirac (TFD), the Dirac–
Hartree–Fock–Slater (DHFS) and the numerical densities obtained from multiconfiguration
Dirac–Fock (DF) self-consistent calculations. In the present study, V (r) is calculated using
our numerical self-consistent electron densities calculated from density functional theory [22],
where the calculations are performed self-consistently for each bound electron state of the
atom within the local spin density approximation (LSDA) [23]. Exchange and correlation
functional approximation and atomic configurations are used from [24] and [25], respectively.
In these self-consistent calculations, atomic electron densities, Coulomb potentials, the energy
eigenvalue, the integration of the radial Schrödinger equation and the screened Poisson
integral are evaluated numerically using the Herman and Skillman calculations [25] on a
radial mesh of 440 r -values. A comparison between the different electron density models
cited before is shown in figures 3(a) and (b) for Cu and Ag. Good agreement is found
between our calculated LSDA and DF electron densities which are both performed self-
consistently. In figure 3(a) the Cu LSDA and DF electron densities are indistinguishable.
The TFM, TFD, and DHFS electron densities are analytical models and can be used only as
approximations.

When the atom is bound in a solid the interaction potential between the charged particle
and the atom is different from that of the charged particle-free atom due to the crystalline
structure, and hence solid-state effects should be included. The effect of the lattice structure is
included in the elastic collision but channelling processes are excluded [26]. Solid-state effects
have been introduced by using the muffin-tin model in which the potential of each atom of the
solid is altered by the nearest neighbour [27–29].

The inelastic process is introduced in the present MC simulation by using a simple
approximation to calculate the energy loss of the positron in which we assume that a positron
loses its energy in a continuous manner between elastic collisions. Functions describing the
energy loss are calculated using Gaussian quadrature of the polynomial best fits of the stopping
power numerical results given by Ashley [30]. Values of Ashley’s stopping powers for Al, Cu,
Ag and Au are presented in figure 4.
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(a)

(b)

Figure 3. (a) Cu electron densities calculated from different models. (b) Ag electron densities
calculated from different models.

3.2. Simulation procedure

The positron trajectories are constructed using the linear step lengths described by the
exponential distribution as

P(s) = (1/λe) exp(−S/λe) (7)

where the distance S travelled between two elastic collisions is calculated by injecting a random
number R1 ∈ (0 − 1) in equation (7) as

S = −λe Ln (R1). (8)

The mean free path λe is calculated from the knowledge of the elastic cross section and the
number of atoms per unit volume as

λe = (Nσ PW
e )−1. (9)
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Figure 4. Ashley’s stopping power of keV
positrons for elemental solids Al, Cu, Ag, Au [29].

The energy loss �E along the distance S travelled between collisions is calculated as

�E =
(

dE

dS

)
S. (10)

The azimuthal angle is uniform between 0 and 2π and is defined by using a second random
number R2 as

φ = 2π R2. (11)

The polar scattering angle after an elastic collision is calculated by injecting a third random
number R3 in equation (6) derived from the Wentzel model as

θ = Arccos

(
1 − 2γ R3

2 + γ − 2R3

)
(12)

where the screening parameter is a function of the energy calculated from the optimized
Wentzel model (OW2). Values of γ (E) for different elements in the keV range are shown
in figures 5(a)–(c). Also represented are values of the elastic cross sections calculated from the
PW model and those obtained from our resulting model (OW2).

4. Simulation results

The accuracy of the elastic process using our (OW2) model is tested in the present MC
calculations by comparison of the calculated backscattering probabilities with experiment. The
backscattering probability results represent a crucial test for the validity of any MC simulation.

Backscattering probabilities are calculated for keV and sub-keV positrons impinging with
normal and oblique incidence on semi-infinite solids. Elemental solids varying from Z = 13 to
79 are considered. The termination energy considered is ∼100 eV. Typically 105–106 positron
trajectories are constructed in the present simulations.

Table 1 reports our MC results for the positron backscattering probabilities (referred to as
Present MC) for various values of Z and for positron primary energy in the range 1–10 keV.
For comparison, our recent theoretical backscattering coefficients [20], and experimental
measurements of Coleman and MC simulations results of Jensen and Walker reported in [8]
are also presented. Accordingly, there is a reasonable agreement between our results and the
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(a) (b)

(c)

Figure 5. (a) Values of the screening parameter of Al using the OW2 model in the range 50–
10 000 eV. Calculated elastic cross sections from the OW2 and PW models are also represented.
(b) Values of the screening parameter of Ag using the OW2 model in the range 50–10 000 eV.
Calculated elastic cross sections from the OW2 and PW models are also represented. (c) Values of
the screening parameter of Au using the OW2 model in the range 50–10 000 eV. Calculated elastic
cross sections from the OW2 and PW models are also represented.

available experimental ones. Moreover, our results are closer to experimental findings than
those of the MC simulations. Note that in [4, 8], event-by-event MC calculation is considered.
Numerical differential cross sections in scattering angle and in energy loss are used to calculate
the angular deflection distribution and the energy loss distribution, respectively. The elastic
model has been modelled using partial wave calculations and the inelastic process using the
full Penn model [4].

In [20], we used a theoretical model [31] derived from the transport equation of Boltzman
with accurate transport cross sections as well as Ashley’s stopping power functions, making
the calculation of the backscattering coefficients less time consuming and in better agreement
with experiment. However, the calculated theoretical backscattering coefficients are in closer
agreement with experiment than the MC calculations, as suspected by transport theory.
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Figure 6. (a) Low-energy positron backscat-
tering results from Al calculated using different
models [21]. (b) Low-energy positron backscat-
tering results from Cu calculated using different
models [21].

For oblique incidence, few experimental data exist. Meanwhile, as an example of
illustration, in table 2 we have compared our results to the experimental backscattering
coefficients reported in [8] of 5 keV positrons impinging on Al and Au as light and heavy
element with oblique incidence θ varying in the range 0◦ � θ � 80◦, respectively. The
agreement found reinforces the validity of our modelling to the elastic process using the
optimized Wentzel model (OW2).

Results for the backscattering probabilities and coefficients in the sub-keV range (100–
1000 eV) have been published and discussed in detail recently in [21].

In particular, the shape of the backscattering coefficient curves calculated for materials
with different Z has been studied, showing a different behaviour from that in the keV range as
Z increases.

Sub-keV backscattering results are shown in figure 6(a), (b) for Al and Cu, respectively.
For comparison, different sets of data calculated with different methods as described before are
plotted. Also, the measurements of Coleman at 1 keV of 1992 [8] and 1996 [32] are added.
Particular attention has been focused in [21] on the polarization and solid-state effects. We have



A simplified positron elastic scattering model for Monte Carlo calculations 10311

Table 1. Calculated (Present (OW2)), theoretical (Theo) [20], experimental (Exp) [8] and MC
simulation (MC) [8] results for positron (E = 1–10 keV) backscattering coefficients from Al, Cu,
Ag and Au.

Z E (keV) 1 2 3 4 5 6 7 8 9 10

Present (OW2) 0.0954 0.0978 0.0981 0.0960 0.0989 0.0992 0.100 0.104 0.105 0.109
Theo [20] 0.0864 0.0987 0.104 0.107 0.111 0.113 0.116 0.118 0.120 0.123

13 Exp [8] 0.069 — 0.086 — 0.112 — 0.122 — — 0.123
MC [8] 0.109 — 0.115 — 0.126 — 0.125 — — 0.128

Present (OW2) 0.148 0.169 0.178 0.188 0.194 0.199 0.208 0.210 0.214 0.218
Theo [20] 0.117 0.146 0.163 0.175 0.185 0.193 0.200 0.205 0.210 0.215

29 Exp [8] 0.135 — 0.177 — 0.205 — 0.226 — — 0.229
MC [8] 0.156 — 0.194 — 0.205 — 0.231 — — 0.235

Present (OW2) 0.131 0.154 0.177 0.198 0.2156 0.230 0.241 0.255 0.264 0.278
Theo [20] 0.109 0.146 0.173 0.194 0.212 0.228 0.242 0.254 0.266 0.277

47 Exp [8] 0.106 — 0.168 — 0.227 — 0.243 — — 0.277
MC [8] 0.126 — 0.182 — 0.216 — 0.236 — — 0.245

Present (OW2) 0.128 0.161 0.189 0.207 0.226 0.240 0.251 0.263 0.273 0.276
Theo [20] 0.112 0.153 0.182 0.205 0.223 0.239 0.252 0.264 0.275 0.285

79 Exp [8] 0.123 — 0.186 — 0.232 — 0.273 — — 0.294
MC [8] 0.168 — 0.242 — 0.290 — 0.316 — — 0.340

Table 2. Calculated (Present (OW2)), theoretical (Theo) [20], experimental (Exp) [8] and MC
simulation (MC) [8] results for 5 keV positron backscattering coefficients from Al and Au versus
angle of incidence.

θ (deg) 0 10 20 30 40 50 55 60 65 70 80

Present (OW2) 0.0989 0.101 0.113 0.138 0.172 0.228 0.266 0.313 0.370 0.425 0.583
Theo [20] 0.111 0.114 0.124 0.143 0.177 0.237 0.281 0.341 0.419 0.517 0.754

13 Exp [8] 0.112 0.113 0.110 0.116 0.141 0.166 — 0.240 — — —
MC [8] 0.126 0.134 0.143 0.167 0.203 0.254 — 0.334 — 0.443 0.568

Present (OW2) 0.226 0.231 0.243 0.270 0.312 0.369 0.401 0.443 0.488 0.537 0.670
Theo [20] 0.223 0.230 0.246 0.278 0.331 0.412 0.465 0.528 0.599 0.676 0.836

79 Exp [8] 0.232 0.256 0.247 0.256 0.326 0.426 0.468 — 0.553 — —
MC [8] 0.290 0.295 0.301 0.336 0.369 0.422 — 0.478 — 0.552 0.673

shown that for energies up to 800 eV, polarization and solid-state effects should be included in
the transport of positrons.

We consider the backscattering calculations presented in figure 6(a), (b) as predictive
results since to our knowledge no experimental data exist in this range. However, they agree
both in shape and in the range of results.

5. Discussion

The elastic process plays a central role in the transport of charged particles in matter. We have
presented a simplified model for positrons derived from the Wentzel model to be used with
ease in a Monte Carlo code. We have shown that the Wentzel model could not be used directly
as an equivalent model of the numerical partial wave calculations but only with an optimized
procedure. The validity of our model has been discussed for the simple but important case of
keV positrons since it represents the range of the non-applicability of Wentzel model.
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Indeed, the resulting optimized model (OW2) has been tested after being implemented
in a simple ‘CSDA’ Monte Carlo code to calculate the backscattering probabilities from four
elemental solids with Z varying from 13 to 79 in the keV range. The results have been found
to be in agreement with the measurements of Coleman et al [8] for both normal and oblique
incidence. Thus, as a conclusion, we suggest the use of our optimized Wentzel (OW2) elastic
model for general purposes in surface science and related applications based on Monte Carlo
simulations. The OW2 model has the advantages of avoiding the use of the large memory
space of numerical differential cross sections by using one vector γ (E) for each element and
of considerably reducing the time taken for the simulation since a simple analytic expression
for the sampling of the angular deflection is used.

Finally, it is important to note that the present Monte Carlo simulation is based on the
continuous slowing down approximation, and thus could be used to calculate backscattering,
absorption and transmitted probabilities and other physical quantities related to the trajectories
of the positrons but not the individual energy loss during the slowing down. Similar work
taking into account the fluctuations in energy loss is under construction. Results will be given
in the near future.
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